Loading…
Structure for regular inclusions. II: Cartan envelopes, pseudo-expectations and twists
We introduce the notion of a Cartan envelope for a regular inclusion (C,D). When a Cartan envelope exists, it is the unique, minimal Cartan pair into which (C,D) regularly embeds. We prove a Cartan envelope exists if and only if (C,D) has the unique faithful pseudo-expectation property and also give...
Saved in:
Published in: | Journal of functional analysis 2021-07, Vol.281 (1), p.108993, Article 108993 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the notion of a Cartan envelope for a regular inclusion (C,D). When a Cartan envelope exists, it is the unique, minimal Cartan pair into which (C,D) regularly embeds. We prove a Cartan envelope exists if and only if (C,D) has the unique faithful pseudo-expectation property and also give a characterization of the Cartan envelope using the ideal intersection property.
For any covering inclusion, we construct a Hausdorff twisted groupoid using appropriate linear functionals and we give a description of the Cartan envelope for (C,D) in terms of a twist whose unit space is a set of states on C constructed using the unique pseudo-expectation. For a regular MASA inclusion, this twist differs from the Weyl twist; in this setting, we show that the Weyl twist is Hausdorff precisely when there exists a conditional expectation of C onto D.
We show that a regular inclusion with the unique pseudo-expectation property is a covering inclusion and give other consequences of the unique pseudo-expectation property. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2021.108993 |