Loading…

Structure for regular inclusions. II: Cartan envelopes, pseudo-expectations and twists

We introduce the notion of a Cartan envelope for a regular inclusion (C,D). When a Cartan envelope exists, it is the unique, minimal Cartan pair into which (C,D) regularly embeds. We prove a Cartan envelope exists if and only if (C,D) has the unique faithful pseudo-expectation property and also give...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis 2021-07, Vol.281 (1), p.108993, Article 108993
Main Author: Pitts, David R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce the notion of a Cartan envelope for a regular inclusion (C,D). When a Cartan envelope exists, it is the unique, minimal Cartan pair into which (C,D) regularly embeds. We prove a Cartan envelope exists if and only if (C,D) has the unique faithful pseudo-expectation property and also give a characterization of the Cartan envelope using the ideal intersection property. For any covering inclusion, we construct a Hausdorff twisted groupoid using appropriate linear functionals and we give a description of the Cartan envelope for (C,D) in terms of a twist whose unit space is a set of states on C constructed using the unique pseudo-expectation. For a regular MASA inclusion, this twist differs from the Weyl twist; in this setting, we show that the Weyl twist is Hausdorff precisely when there exists a conditional expectation of C onto D. We show that a regular inclusion with the unique pseudo-expectation property is a covering inclusion and give other consequences of the unique pseudo-expectation property.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2021.108993