Loading…

Environment identification in flight using sparse approximation of wing strain

This paper addresses the problem of identifying different flow environments from sparse data collected by wing strain sensors. Insects regularly perform this feat using a sparse ensemble of noisy strain sensors on their wing. First, we obtain strain data from numerical simulation of a Manduca sexta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluids and structures 2017-04, Vol.70, p.162-180
Main Authors: Manohar, Krithika, Brunton, Steven L., Kutz, J. Nathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the problem of identifying different flow environments from sparse data collected by wing strain sensors. Insects regularly perform this feat using a sparse ensemble of noisy strain sensors on their wing. First, we obtain strain data from numerical simulation of a Manduca sexta hawkmoth wing undergoing different flow environments. Our data-driven method learns low-dimensional strain features originating from different aerodynamic environments using proper orthogonal decomposition (POD) modes in the frequency domain, and leverages sparse approximation to classify a set of strain frequency signatures using a dictionary of POD modes. This bio-inspired machine learning architecture for dictionary learning and sparse classification permits fewer costly physical strain sensors while being simultaneously robust to sensor noise. A measurement selection algorithm identifies frequencies that best discriminate the different aerodynamic environments in low-rank POD feature space. In this manner, sparse and noisy wing strain data can be exploited to robustly identify different aerodynamic environments encountered in flight, providing insight into the stereotyped placement of neurons that act as strain sensors on a Manduca sexta hawkmoth wing.
ISSN:0889-9746
1095-8622
DOI:10.1016/j.jfluidstructs.2017.01.008