Loading…
A method for the integer-order approximation of fractional-order systems
A procedure for approximating fractional-order systems by means of integer-order state-space models is presented. It is based on the rational approximation of fractional-order operators suggested by Oustaloup. First, a matrix differential equation is obtained from the original fractional-order repre...
Saved in:
Published in: | Journal of the Franklin Institute 2014-01, Vol.351 (1), p.555-564 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A procedure for approximating fractional-order systems by means of integer-order state-space models is presented. It is based on the rational approximation of fractional-order operators suggested by Oustaloup. First, a matrix differential equation is obtained from the original fractional-order representation. Then, this equation is realized in a state-space form that has a sparse block-companion structure. The dimension of the resulting integer-order model can be reduced using an efficient algorithm for rational L2 approximation. Two numerical examples are worked out to show the performance of the suggested technique. |
---|---|
ISSN: | 0016-0032 1879-2693 |
DOI: | 10.1016/j.jfranklin.2013.09.005 |