Loading…

Hidden Semi-Markov Models for Semantic-Graph Language Modeling

Semantic communication is expected to play a critical role in reducing traffic load in future intelligent large-scale sensor networks. With advances in Machine Learning (ML) and Deep Learning (DL) techniques, design of semantically-aware systems has become feasible in recent years. This work focuses...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute 2024-11, Vol.361 (16), p.107032, Article 107032
Main Authors: Yetim, Sadik Yagiz, Duman, Tolga M., Arikan, Orhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semantic communication is expected to play a critical role in reducing traffic load in future intelligent large-scale sensor networks. With advances in Machine Learning (ML) and Deep Learning (DL) techniques, design of semantically-aware systems has become feasible in recent years. This work focuses on improving the reliability of the semantic information represented in a graph-based language that has been recently proposed. Inaccuracies in the representation of the semantic information can arise due to multiple factors, such as algorithmic shortcomings or sensory errors, decreasing the performance of the semantic extractor. This study aims to model the temporal evolution of semantic information, represented using the graph language, to enhance its reliability. Each unique graph configuration is treated as a distinct state, leading to a Hidden Semi-Markov Model (HSMM) defined over the state space of the graph configurations. The HSMM formulation enables the integration of prior knowledge on the semantic signal into the graph sequences, enhancing the accuracy in identifying semantic innovations. Within the HSMM framework, algorithms designed for graph smoothing, semantic information fusion, and model learning are introduced. The efficacy of these algorithms in improving the reliability of the extracted semantic-graphs is demonstrated through simulations and video streams generated in the CARLA simulation environment.
ISSN:0016-0032
DOI:10.1016/j.jfranklin.2024.107032