Loading…
Structural characterization, molecular docking assessment, drug-likeness study and DFT investigation of 2-(2-{1,2-dibromo-2-[3-(4-chloro-phenyl)-[1,2,4]oxadiazol-5-yl]-2-fluoro-ethyl1}-phenyl)-methyl 3-methoxy-acrylic ester
The structure of 2-(2-{1,2 dibromo-2-[3-(4-chloro-phenyl)- [1,2,4]oxadiazol-5-yl]-2-fluoro-ethyl1}-phenyl)-methyl 3-methoxy-acrylic ester (BCOD) was determined using X-ray single-crystal diffraction and theoretical. The BCOD compound crystallizes in the P-1 space group of the triclinic crystallograp...
Saved in:
Published in: | Journal of the Indian Chemical Society 2022-11, Vol.99 (11), p.100745, Article 100745 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The structure of 2-(2-{1,2 dibromo-2-[3-(4-chloro-phenyl)- [1,2,4]oxadiazol-5-yl]-2-fluoro-ethyl1}-phenyl)-methyl 3-methoxy-acrylic ester (BCOD) was determined using X-ray single-crystal diffraction and theoretical. The BCOD compound crystallizes in the P-1 space group of the triclinic crystallographic system. The absolute structure has been refined to the final R of 5% for 3356 observed reflections. The evaluation of the theoretical parameters was performed using density functional theory (DFT) along with B3LYP and HSEH1PBE functionals at 6–311++G (d,p) basis set in the ground state. The theoretical geometries reproduce well the X-ray structural parameters. The 3D structure was analyzed through distances, bond and dihedral angles exposing that the BCOD molecule is non-planar. The HOMO and LUMO energy values, and reactivity descriptors were also studied and the molecular electrostatic surface potential (MEP) was calculated and mapped to highlight the positive and negative regions in the molecule. Furthermore, intermolecular interactions and their contributions in the crystal were analyzed by exploring Hirshfeld surface and 2D fingerprint results. The H⋅⋅⋅H and O⋅⋅⋅H intercontacts represent the main intermolecular interactions with contributions of 30.7% and 14%, respectively. Moreover, reduced density gradient was used to investigate non-bonded and weak interactions. The biological activity of this compound was extensively studied using molecular docking to identify the hydrogen bonds and binding energy with different proteins.
[Display omitted]
•Experimental structure is compared with optimized model in gas phase.•MEP, HOMO-LUMO energies and molecular orbitals are performed.•Relative contributions of various intermolecular contacts are quantified using Hirshfeld surface analysis and fingerprint plots.•Drug likeness and some of the pharmacokinetic properties were examined.•Molecular docking studies were performed. |
---|---|
ISSN: | 0019-4522 |
DOI: | 10.1016/j.jics.2022.100745 |