Loading…
Probing AndroVul dataset for studies on Android malware classification
Security issues in mobile apps are increasingly relevant as this software have become part of the daily life of billions of people. As the dominant OS, Android is a primary target for ill-intentioned programmers willing to exploit its vulnerabilities by spreading malwares. Significant research has b...
Saved in:
Published in: | Journal of King Saud University. Computer and information sciences 2022-10, Vol.34 (9), p.6883-6894 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Security issues in mobile apps are increasingly relevant as this software have become part of the daily life of billions of people. As the dominant OS, Android is a primary target for ill-intentioned programmers willing to exploit its vulnerabilities by spreading malwares. Significant research has been devoted to the identification of these malwares. The current paper is an extension of our previous effort to contribute to said research with a new benchmark of Android vulnerabilities. We proposed AndroVul, a repository for Android security vulnerabilities, that builds on AndroZoo – a well-known Android app dataset – and contains data on vulnerabilities for a representative sample of about 16,000 Android apps. The present paper adds confirmed malwares from the VirusShare dataset and explores more thoroughly the effectiveness of different machine learning techniques, with respect to the classification of malicious apps. We investigated different classifiers and feature selection techniques as well as different combinations for our input data. Our results suggest that the classifier MPL is the leading classifier, with competitive results that favorably compare to recent malware detection work. Additionally, we investigate how to classify (as benign or malicious) AndroZoo apps based on the number of antivirus flags they are tagged with. We found that different thresholds only marginally affect the machine learning classifier results and that the strictest choice (i.e. one flag) performs best on the confirmed malwares from VirusShare. |
---|---|
ISSN: | 1319-1578 2213-1248 |
DOI: | 10.1016/j.jksuci.2021.08.033 |