Loading…
Global asymptotic stability of a higher order rational difference equation
In this note, we consider the following rational difference equation: x n + 1 = f ( x n − r 1 , … , x n − r k ) g ( x n − m 1 , … , x n − m l ) + 1 f ( x n − r 1 , … , x n − r k ) + g ( x n − m 1 , … , x n − m l ) , n = 0 , 1 , … , where f ∈ C ( ( 0 , + ∞ ) k , ( 0 , + ∞ ) ) and g ∈ C ( ( 0 , + ∞ )...
Saved in:
Published in: | Journal of mathematical analysis and applications 2007-06, Vol.330 (1), p.462-466 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note, we consider the following rational difference equation:
x
n
+
1
=
f
(
x
n
−
r
1
,
…
,
x
n
−
r
k
)
g
(
x
n
−
m
1
,
…
,
x
n
−
m
l
)
+
1
f
(
x
n
−
r
1
,
…
,
x
n
−
r
k
)
+
g
(
x
n
−
m
1
,
…
,
x
n
−
m
l
)
,
n
=
0
,
1
,
…
,
where
f
∈
C
(
(
0
,
+
∞
)
k
,
(
0
,
+
∞
)
)
and
g
∈
C
(
(
0
,
+
∞
)
l
,
(
0
,
+
∞
)
)
with
k
,
l
∈
{
1
,
2
,
…
}
,
0
⩽
r
1
<
⋯
<
r
k
and
0
⩽
m
1
<
⋯
<
m
l
, and the initial values are positive real numbers. We give sufficient conditions under which the unique equilibrium
x
¯
=
1
of this equation is globally asymptotically stable, which extends and includes corresponding results obtained in the recent literature. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2006.07.096 |