Loading…
Upper bounds on the first eigenvalue for a diffusion operator via Bakry–Émery Ricci curvature
Let L = Δ − ∇ φ ⋅ ∇ be a symmetric diffusion operator with an invariant measure d μ = e − φ d x on a complete Riemannian manifold. In this paper we give an upper bound estimate on the first eigenvalue of the diffusion operator L on the complete manifold with the m-dimensional Bakry–Émery Ricci curva...
Saved in:
Published in: | Journal of mathematical analysis and applications 2010, Vol.361 (1), p.10-18 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
L
=
Δ
−
∇
φ
⋅
∇
be a symmetric diffusion operator with an invariant measure
d
μ
=
e
−
φ
d
x
on a complete Riemannian manifold. In this paper we give an upper bound estimate on the first eigenvalue of the diffusion operator
L on the complete manifold with the
m-dimensional Bakry–Émery Ricci curvature satisfying
Ric
m
,
n
(
L
)
⩾
−
(
n
−
1
)
, and therefore generalize a Cheng's result on the Laplacian (S.-Y. Cheng (1975)
[8]) to the case of the diffusion operator. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2009.09.019 |