Loading…

Biharmonic extensions on trees without positive potentials

Let T be a tree rooted at e endowed with a nearest-neighbor transition probability that yields a recurrent random walk. We show that there exists a function K biharmonic off e whose Laplacian has potential theoretic importance and, in addition, has the following property: Any function f on T which i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2011-06, Vol.378 (2), p.710-722
Main Authors: Bajunaid, Ibtesam O., Cohen, Joel M., Colonna, Flavia, Singman, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let T be a tree rooted at e endowed with a nearest-neighbor transition probability that yields a recurrent random walk. We show that there exists a function K biharmonic off e whose Laplacian has potential theoretic importance and, in addition, has the following property: Any function f on T which is biharmonic outside a finite set has a representation, unique up to addition of a harmonic function, of the form f = β K + B + L , where β a constant, B is a biharmonic function on T, and L is a function, subject to certain normalization conditions, whose Laplacian is constant on all sectors sufficiently far from the root. We obtain a characterization of the functions biharmonic outside a finite set whose Laplacian has 0 flux similar to one that holds for a function biharmonic outside a compact set in R n for n = 2 , 3 , and 4 proved by Bajunaid and Anandam. Moreover, we extend the definition of flux and, under certain restrictions on the tree, we characterize the functions biharmonic outside a finite set that have finite flux in this extended sense.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2010.12.026