Loading…
Extremal energies of Laplacian operator: Different configurations for steady vortices
In this paper, we study a maximization and a minimization problem associated with a Poisson boundary value problem. Optimal solutions in a set of rearrangements of a given function define stationary and stable flows of an ideal fluid in two dimensions. The main contribution of this paper is to deter...
Saved in:
Published in: | Journal of mathematical analysis and applications 2017-04, Vol.448 (1), p.140-155 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study a maximization and a minimization problem associated with a Poisson boundary value problem. Optimal solutions in a set of rearrangements of a given function define stationary and stable flows of an ideal fluid in two dimensions. The main contribution of this paper is to determine the optimal solutions. At first, we determine a nearly optimal solution which is an approximation of the optimal solution when the problems are in low contrast regime. Secondly, for the high contrast regime, two optimization algorithms are developed. For the minimization problem, we prove that our algorithm converges to the global minimizer regardless of the initializer. The maximization algorithm is capable of deriving all local maximizers including the global one. Numerical experiments lead us to a conjecture about the location of the maximizers in the set of rearrangements of a function. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2016.09.011 |