Loading…
Exponential number of stationary solutions for Nagumo equations on graphs
We study the Nagumo reaction–diffusion equation on graphs and its dependence on the underlying graph structure and reaction–diffusion parameters. We provide necessary and sufficient conditions for the existence and nonexistence of spatially heterogeneous stationary solutions. Furthermore, we observe...
Saved in:
Published in: | Journal of mathematical analysis and applications 2017-11, Vol.455 (2), p.1749-1764 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the Nagumo reaction–diffusion equation on graphs and its dependence on the underlying graph structure and reaction–diffusion parameters. We provide necessary and sufficient conditions for the existence and nonexistence of spatially heterogeneous stationary solutions. Furthermore, we observe that for sufficiently strong reactions (or sufficiently weak diffusion) there are 3n stationary solutions out of which 2n are asymptotically stable. Our analysis reveals interesting relationship between the analytic properties (diffusion and reaction parameters) and various graph characteristics (degree distribution, graph diameter, eigenvalues). We illustrate our results by a detailed analysis of the Nagumo equation on a simple graph and conclude with a list of open questions. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2017.06.075 |