Loading…
General regular variation, Popa groups and quantifier weakening
We introduce general regular variation, a theory of regular variation containing the existing Karamata, Bojanic-Karamata/de Haan and Beurling theories as special cases. The unifying theme is the Popa groups of our title viewed as locally compact abelian ordered topological groups, together with thei...
Saved in:
Published in: | Journal of mathematical analysis and applications 2020-03, Vol.483 (2), p.123610, Article 123610 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce general regular variation, a theory of regular variation containing the existing Karamata, Bojanic-Karamata/de Haan and Beurling theories as special cases. The unifying theme is the Popa groups of our title viewed as locally compact abelian ordered topological groups, together with their Haar measure and Fourier theory. The power of this unified approach is shown by the simplification it brings to the whole area of quantifier weakening, so important in this field. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2019.123610 |