Loading…
Uniqueness results and enclosure properties for hypersurfaces with boundary in weighted cylinders
For a Riemannian manifold M, possibly with boundary, we consider the Riemannian product M×Rk with a smooth positive function that weights the Riemannian measures. In this work we characterize parabolic hypersurfaces with non-empty boundary and contained within certain regions of M×Rk with suitable w...
Saved in:
Published in: | Journal of mathematical analysis and applications 2022-08, Vol.512 (1), p.126143, Article 126143 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a Riemannian manifold M, possibly with boundary, we consider the Riemannian product M×Rk with a smooth positive function that weights the Riemannian measures. In this work we characterize parabolic hypersurfaces with non-empty boundary and contained within certain regions of M×Rk with suitable weights. Our results include half-space and Bernstein-type theorems in weighted cylinders. We also generalize to this setting some classical properties about the confinement of a compact minimal hypersurface to certain regions of Euclidean space according to the position of its boundary. Finally, we show interesting situations where the statements are applied, some of them in relation to the singularities of the mean curvature flow. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2022.126143 |