Loading…

Uniqueness results and enclosure properties for hypersurfaces with boundary in weighted cylinders

For a Riemannian manifold M, possibly with boundary, we consider the Riemannian product M×Rk with a smooth positive function that weights the Riemannian measures. In this work we characterize parabolic hypersurfaces with non-empty boundary and contained within certain regions of M×Rk with suitable w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 2022-08, Vol.512 (1), p.126143, Article 126143
Main Authors: Castro, Katherine, Rosales, César
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a Riemannian manifold M, possibly with boundary, we consider the Riemannian product M×Rk with a smooth positive function that weights the Riemannian measures. In this work we characterize parabolic hypersurfaces with non-empty boundary and contained within certain regions of M×Rk with suitable weights. Our results include half-space and Bernstein-type theorems in weighted cylinders. We also generalize to this setting some classical properties about the confinement of a compact minimal hypersurface to certain regions of Euclidean space according to the position of its boundary. Finally, we show interesting situations where the statements are applied, some of them in relation to the singularities of the mean curvature flow.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126143