Loading…
Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation
In a single bevel GMAW (gas metal arc welding) with gap fluctuation, a deep learning model was constructed using the monitoring image during the welding to predict the welding quality. We utilized Python and the library Keras and created a CNN (Convolutional neural network) model using the top surfa...
Saved in:
Published in: | Journal of manufacturing processes 2021-01, Vol.61, p.590-600 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a single bevel GMAW (gas metal arc welding) with gap fluctuation, a deep learning model was constructed using the monitoring image during the welding to predict the welding quality. We utilized Python and the library Keras and created a CNN (Convolutional neural network) model using the top surface image including the molten pool as an input. The classification model was used to predict the burn-through, and the regression model was used to estimate the penetration depth. As a result, the excessive penetration and burn-through could be predicted in advance and more than 95 % of estimated results of penetration depth were less 1 mm error for stepped and tapered sample shapes. |
---|---|
ISSN: | 1526-6125 2212-4616 |
DOI: | 10.1016/j.jmapro.2020.10.019 |