Loading…

Identifying magnetic antiskyrmions while they form with convolutional neural networks

Chiral magnets have attracted a large amount of research interest in recent years because they support a variety of topological defects, such as skyrmions and bimerons, and allow for their observation and manipulation through several techniques. They also have a wide range of applications in the fie...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2022-12, Vol.563, p.169806, Article 169806
Main Authors: Araz, Jack Y., Criado, Juan Carlos, Spannowsky, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chiral magnets have attracted a large amount of research interest in recent years because they support a variety of topological defects, such as skyrmions and bimerons, and allow for their observation and manipulation through several techniques. They also have a wide range of applications in the field of spintronics, particularly in developing new technologies for memory storage devices. However, the vast amount of data generated in these experimental and theoretical studies requires adequate tools, among which machine learning is crucial. We use a Convolutional Neural Network (CNN) to identify the relevant features in the thermodynamical phases of chiral magnets, including (anti-)skyrmions, bimerons, and helical and ferromagnetic states. We use a flexible multi-label classification framework that can correctly classify states in which different features and phases are mixed. We then train the CNN to predict the features of the final state from snapshots of intermediate states of a lattice Monte Carlo simulation. The trained model allows identifying the different phases reliably and early in the formation process. Thus, the CNN can significantly speed up the large-scale simulations for 3D materials that have been the bottleneck for quantitative studies so far. Moreover, this approach can be applied to the identification of mixed states and emerging features in real-world images of chiral magnets. •Identification of the phases and spin structures of chiral magnets using neural networks.•Classification of mixed states with features of two or more different types.•Early identification of the spin configurations during their formation process.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2022.169806