Loading…
Transcendence of multi-indexed infinite series
We consider the transcendence of the multi-indexed series ∑ n 1 , … , n k = 1 ∞ f ( n 1 , … , n k ) n 1 ⋯ n k and then extend our results to series of the form ∑ n 1 , … , n k = 0 ∞ f ( n 1 , … , n k ) A 1 ( n 1 ) ⋯ A k ( n k ) B 1 ( n 1 ) ⋯ B k ( n k ) where f is a k-periodic function and each A i...
Saved in:
Published in: | Journal of number theory 2011-04, Vol.131 (4), p.705-715 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the transcendence of the multi-indexed series
∑
n
1
,
…
,
n
k
=
1
∞
f
(
n
1
,
…
,
n
k
)
n
1
⋯
n
k
and then extend our results to series of the form
∑
n
1
,
…
,
n
k
=
0
∞
f
(
n
1
,
…
,
n
k
)
A
1
(
n
1
)
⋯
A
k
(
n
k
)
B
1
(
n
1
)
⋯
B
k
(
n
k
)
where
f is a
k-periodic function and each
A
i
(
x
)
,
B
i
(
x
)
is a polynomial with algebraic coefficients. We relate these series to special values of the digamma function as well as polygamma functions. We also show some conditional implications on the transcendence of the series via Schanuel's Conjecture. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1016/j.jnt.2010.11.003 |