Loading…
A generalization of reduced Arakelov divisors of a number field
Let C≥1. Inspired by the LLL-algorithm, we define strongly C-reduced divisors of a number field F which are generalized from the concept of reduced Arakelov divisors. Moreover, we prove that strongly C-reduced Arakelov divisors still retain outstanding properties of the reduced ones: they form a fin...
Saved in:
Published in: | Journal of number theory 2016-10, Vol.167, p.104-117 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let C≥1. Inspired by the LLL-algorithm, we define strongly C-reduced divisors of a number field F which are generalized from the concept of reduced Arakelov divisors. Moreover, we prove that strongly C-reduced Arakelov divisors still retain outstanding properties of the reduced ones: they form a finite, regularly distributed set in the Arakelov class group and the oriented Arakelov class group of F. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1016/j.jnt.2016.03.006 |