Loading…
Computing endomorphism rings and Frobenius matrices of Drinfeld modules
Let Fq[T] be the polynomial ring over a finite field Fq. We study the endomorphism rings of Drinfeld Fq[T]-modules of arbitrary rank over finite fields. We compare the endomorphism rings to their subrings generated by the Frobenius endomorphism and deduce from this a refinement of a reciprocity law...
Saved in:
Published in: | Journal of number theory 2022-08, Vol.237, p.145-164 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let Fq[T] be the polynomial ring over a finite field Fq. We study the endomorphism rings of Drinfeld Fq[T]-modules of arbitrary rank over finite fields. We compare the endomorphism rings to their subrings generated by the Frobenius endomorphism and deduce from this a refinement of a reciprocity law for division fields of Drinfeld modules proved in our earlier paper. We then use these results to give an efficient algorithm for computing the endomorphism rings and discuss some interesting examples produced by our algorithm. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1016/j.jnt.2019.11.018 |