Loading…
Stillman's question for exterior algebras and Herzog's conjecture on Betti numbers of syzygy modules
Let K be a field of characteristic 0 and consider exterior algebras of finite dimensional K-vector spaces. In this short paper we exhibit principal quadric ideals in a family whose Castelnuovo–Mumford regularity is unbounded. This negatively answers the analogue of Stillman's Question for exter...
Saved in:
Published in: | Journal of pure and applied algebra 2019-02, Vol.223 (2), p.634-640 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let K be a field of characteristic 0 and consider exterior algebras of finite dimensional K-vector spaces. In this short paper we exhibit principal quadric ideals in a family whose Castelnuovo–Mumford regularity is unbounded. This negatively answers the analogue of Stillman's Question for exterior algebras posed by I. Peeva. We show that, via the Bernstein–Gel'fand–Gel'fand correspondence, these examples also yields counterexamples to a conjecture of J. Herzog on the Betti numbers in the linear strand of syzygy modules over polynomial rings. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2018.04.012 |