Loading…
The Balmer spectrum of rational equivariant cohomology theories
The category of rational G-equivariant cohomology theories for a compact Lie group G is the homotopy category of rational G-spectra and therefore tensor-triangulated. We show that its Balmer spectrum is the set of conjugacy classes of closed subgroups of G, with the topology corresponding to the top...
Saved in:
Published in: | Journal of pure and applied algebra 2019-07, Vol.223 (7), p.2845-2871 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The category of rational G-equivariant cohomology theories for a compact Lie group G is the homotopy category of rational G-spectra and therefore tensor-triangulated. We show that its Balmer spectrum is the set of conjugacy classes of closed subgroups of G, with the topology corresponding to the topological poset of [7]. This is used to classify the collections of subgroups arising as the geometric isotropy of finite G-spectra. The ingredients for this classification are (i) the algebraic model of free spectra of the author and B. Shipley [14], (ii) the Localization Theorem of Borel–Hsiang–Quillen [21] and (iii) tom Dieck's calculation of the rational Burnside ring [4]. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2018.10.001 |