Loading…

The Balmer spectrum of rational equivariant cohomology theories

The category of rational G-equivariant cohomology theories for a compact Lie group G is the homotopy category of rational G-spectra and therefore tensor-triangulated. We show that its Balmer spectrum is the set of conjugacy classes of closed subgroups of G, with the topology corresponding to the top...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pure and applied algebra 2019-07, Vol.223 (7), p.2845-2871
Main Author: Greenlees, J.P.C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The category of rational G-equivariant cohomology theories for a compact Lie group G is the homotopy category of rational G-spectra and therefore tensor-triangulated. We show that its Balmer spectrum is the set of conjugacy classes of closed subgroups of G, with the topology corresponding to the topological poset of [7]. This is used to classify the collections of subgroups arising as the geometric isotropy of finite G-spectra. The ingredients for this classification are (i) the algebraic model of free spectra of the author and B. Shipley [14], (ii) the Localization Theorem of Borel–Hsiang–Quillen [21] and (iii) tom Dieck's calculation of the rational Burnside ring [4].
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2018.10.001