Loading…
Almost complete intersection binomial edge ideals and their Rees algebras
Let G be a simple graph on n vertices and JG denote the binomial edge ideal of G in the polynomial ring S=K[x1,…,xn,y1,…,yn]. In this article, we compute the second graded Betti numbers of JG, and we obtain a minimal presentation of it when G is a tree or a unicyclic graph. We classify all graphs wh...
Saved in:
Published in: | Journal of pure and applied algebra 2021-06, Vol.225 (6), p.106628, Article 106628 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G be a simple graph on n vertices and JG denote the binomial edge ideal of G in the polynomial ring S=K[x1,…,xn,y1,…,yn]. In this article, we compute the second graded Betti numbers of JG, and we obtain a minimal presentation of it when G is a tree or a unicyclic graph. We classify all graphs whose binomial edge ideals are almost complete intersection, prove that they are generated by a d-sequence and that the Rees algebra of their binomial edge ideal is Cohen-Macaulay. We also obtain an explicit description of the defining ideal of the Rees algebra of those binomial edge ideals. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2020.106628 |