Loading…
Geometric partial comodules over flat coalgebras in Abelian categories are globalizable
The aim of this paper is to prove the statement in the title. As a by-product, we obtain new globalization results in cases never considered before, such as partial corepresentations of Hopf algebras. Moreover, we show that for partial representations of groups and Hopf algebras, our globalization c...
Saved in:
Published in: | Journal of pure and applied algebra 2024-03, Vol.228 (3), p.107502, Article 107502 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this paper is to prove the statement in the title. As a by-product, we obtain new globalization results in cases never considered before, such as partial corepresentations of Hopf algebras. Moreover, we show that for partial representations of groups and Hopf algebras, our globalization coincides with those described earlier in literature. Finally, we introduce Hopf partial comodules over a bialgebra as geometric partial comodules in the monoidal category of (global) modules. By applying our globalization theorem we obtain an analogue of the fundamental theorem for Hopf modules in this partial setting. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2023.107502 |