Loading…
The incorporation of armchair and zigzag boron nitride nanoribbons in graphene monolayers: An examination of the structural, electronic, and magnetic properties
The opening of an energy gap and generating magnetism in graphene are certainly the most significant and urgent topics in your current research. The majority of proposed applications for it require the ability to modify its electronic structure and induce magnetism in it. Here, using first-principle...
Saved in:
Published in: | The Journal of physics and chemistry of solids 2025-01, Vol.196, p.112376, Article 112376 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The opening of an energy gap and generating magnetism in graphene are certainly the most significant and urgent topics in your current research. The majority of proposed applications for it require the ability to modify its electronic structure and induce magnetism in it. Here, using first-principles calculations utilizing the PBE and HSE06 functionals, we examine the structural, energetic, electronic, magnetic, and phonon transport characteristics of armchair graphene and boron nitride nanoribbons (aGNRs and aBNNRs), and zigzag graphene and boron nitride nanoribbons (zGNRs and zBNNRs) with varying widths. We shall emphasize the impact of incorporating aBNNRs and zBNNRs of varying widths into graphene monolayers (GMLs). The findings suggest that zBNNRs are easier to insert into GMLs than aBNNRs. A study of the average formation energies of graphene and boron nitride nanoribbons reveals that BNNRs have a formation energy that is at least twenty times greater than GNRs. We have observed energy gaps that can be classified into three distinct families in aGNRs, aBNNRs, and aBNNRs inserted into GML. In the zGNRs and zBNNRs inserted in GML, depending on the width, different magnetic orderings (antiferromagnetic, ferrimagnetic, and ferromagnetic), and electronic behaviors are observed (metallic, semimetallic, semiconductor, and topological insulator).
•It is easier to insert zBNNRs into graphene monolayers than it is to insert aBNNRs.•The N-aBNNR-GML exhibits semiconductor behavior and can be classified into three families.•N-zBNNR-GML has a band structure similar to that of a topological insulator. |
---|---|
ISSN: | 0022-3697 |
DOI: | 10.1016/j.jpcs.2024.112376 |