Loading…

Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors

The porous CoFe2O4nanomesh arrays are successfully synthesized on nickel foam substrate through a high temperature and pressure hydrothermal method, following by the thermal post-treatment in air. The CoFe2O4 nanomesh arrays own numerous pores and large specific surface area, which is in favor of ex...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2016-09, Vol.327, p.599-609
Main Authors: Liu, Li, Zhang, Huijuan, Mu, Yanping, Bai, Yuanjuan, Wang, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The porous CoFe2O4nanomesh arrays are successfully synthesized on nickel foam substrate through a high temperature and pressure hydrothermal method, following by the thermal post-treatment in air. The CoFe2O4 nanomesh arrays own numerous pores and large specific surface area, which is in favor of exposing more active sites. In consideration of the structural preponderances and versatility of the materials, the CoFe2O4 nanomesh arrays have been researched as the binder-free electrode materials for electrocatalysis and supercapacitors. When the CoFe2O4nanomesh arrays on nickel foam (CoFe2O4 NM-As/Ni) directly act as the free-binder catalyst toward catalyzing the oxygen evolution reaction (OER) of electrochemical water splitting, CoFe2O4 NM-As/Ni exhibits an admirable OER property with a low onset potential of 1.47 V(corresponding to the onset overpotential of 240 mV), a minimal overpotential (η10 = 253 mV), a small Tafel slope (44 mV dec−1), large anodic currents and long-term durability for 35 h in alkaline media. In addition, as an electrode of supercapacitors, CoFe2O4 NM-As/Ni obtains a desired specific capacitance (1426 F/g at the current density of 1 A/g), remarkable rate capability (1024 F/g at the current density of 20 A/g) and eminent capacitance retention (92.6% after 3000 cycles). The above results demonstrate the CoFe2O4 NM-As/Ni possesses great potential application in electrocatalysis and supercapacitors. [Display omitted] •CoFe2O4 nanomesh arrays are successfully synthesized on the nickel foam.•Porous CoFe2O4 nanomesh arrays own the large surface area and active sites.•Synergistic effect of Co and Fe provides eminent electrochemical performance.•CoFe2O4 NM-As/Ni owns a potential catalytic/capacitive performance.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2016.07.104