Loading…

Characterization of balofloxacin-stressed proteomics and identification of balofloxacin-binding proteins pre-peptidase and integration host factor in Edwardsiella tarda

The overuse of antibiotics to control bacterial pathogens leads to the generation of their antibiotic-resistant strains including Edwardsiella tarda. Understanding of mechanisms of the antibiotic resistance is crucial to develop novel methods to manage the infection. Here, two-dimensional electropho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of proteomics 2019-08, Vol.205, p.103413, Article 103413
Main Authors: Wen, Qi, Liu, Xian-jie, Zhu, Wei-cong, Li, Lu, Li, Min-yi, Peng, Xuna-xian, Li, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The overuse of antibiotics to control bacterial pathogens leads to the generation of their antibiotic-resistant strains including Edwardsiella tarda. Understanding of mechanisms of the antibiotic resistance is crucial to develop novel methods to manage the infection. Here, two-dimensional electrophoresis-based proteomics was used to characterize balofloxacin-responsive proteins. The altered proteome consisted of 19 proteins with differential abundance, where six metabolic pathways were enriched. The metabolic modulation activated the central carbon metabolism with elevation of NADH, PMF, and ATP. Among the 19 proteins, ETAE_1987 (pre-peptidase) and ETAE_2174 (integration host factor beta subunit) were bound with balofloxacin directly. This was further confirmed by the binding of balofloxacin with recombinant ETAE_1987 and ETAE_2174 using Oxford cup method. Compared with bovine serum albumin, a known balofloxacin-binding protein, ETAE_1987 and ETAE_2174 increased the binding capability by 3.3- and 22-fold, respectively. The combination was validated by microscale thermophoresis. These data characterize the balofloxacin-stressed proteome as a result of the increased central carbon metabolism and energy metabolism and determine ETAE_1987 and ETAE_2174 as balofloxacin-binding proteins. These findings have significant implications in understanding bacterial antibiotic-resistant and drug action mechanisms based on balofloxacin-binding proteins. Antibiotic-resistant Edwardsiella tarda strains are frequently isolated and cause a great loss in aquaculture since these bacterial strains are insensitivity to antibiotics. The present study showed that the increased central carbon metabolism forms a characteristic feature of the balofloxacin-stressed proteomics. Furthermore, two proteins, ETAE_1987 (pre-peptidase) and ETAE_2174, of the balofloxacin-stressed proteome were identified as balofloxacin-binding proteins. The binding capability is 0.39 ± 0.017 and 2.67 ± 0.066 ng/μg proteins for ETAE_1987 and ETAE_2174, respectively. These results reveal the elevated central carbon metabolism as a key feature of the balofloxacin-stressed proteomics and pre-peptidase and integration host factor as balofloxacin-binding proteins in E. tarda. These findings are useful in the understanding of bacterial balofloxacin-stressed mechanisms and providing new targets for controlling antibiotic-resistant bacteria. [Display omitted] •The balofloxacin-stressed proteome is characterized.•The
ISSN:1874-3919
DOI:10.1016/j.jprot.2019.103413