Loading…
Eruptive style and flow dynamics of the pyroclastic density currents related to the Holocene Cerro Blanco eruption (Southern Puna plateau, Argentina)
The Pleistocene-Holocene Cerro Blanco Volcanic Complex (CBVC), one of the youngest caldera complexes in the Southern Central Andes, is the source of possibly one of largest Holocene eruptions on Earth, the 4.2 ka, Cerro Blanco eruption. This caldera forming eruption is the younger of two major explo...
Saved in:
Published in: | Journal of South American earth sciences 2020-03, Vol.98, p.102482, Article 102482 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Pleistocene-Holocene Cerro Blanco Volcanic Complex (CBVC), one of the youngest caldera complexes in the Southern Central Andes, is the source of possibly one of largest Holocene eruptions on Earth, the 4.2 ka, Cerro Blanco eruption. This caldera forming eruption is the younger of two major explosive events from the CBVC. Previous work has estimated the range from VEI 6 to 7, yet to date there is no detailed study of the stratigraphy and volcanology of the proximal deposits and dynamics of the Cerro Blanco eruption. Here we present the first detailed analysis of the eruptive products of the Holocene Cerro Blanco eruption that reveal the eruptive sequence highlighting the flow dynamics of the related pyroclastic density currents (PDCs). The PDCs were mainly inertia-dominated, however, channelization of parental PDCs into deep valleys resulted in the flow transformation to forced convection-dominated flows. In addition, topographic constriction in valleys enhanced the sedimentation rate producing regressive bed forms and ultimately the avulsion of the main path of the PDCs resulting in flooding of secondary valleys. A model is presented whereby simultaneous convective and collapsing eruptive column dynamics were established and sustained throughout the eruption. Towards its end, instabilities of the column occurred in response to the climax of a protracted incremental caldera collapse. This eruptive sequence is similar to those observed in well-documented small collapse calderas. An important unresolved issue for the CB eruption is it volume. The currently estimated volume of 83 km3 (DRE) by Fernando-Turiel et al. (2019) is inconsistent with the size of the Cerro Blanco caldera and to date the over thickening of the distal ash by local rework is poor assessed. Further work is needed to fully evaluate this mismatch and accurately estimate the volume of this important Holocene eruption.
•The eruptive sequence Cerro Blanco Ignimbrite is discussed.•The capability to surmount topographic highs suggests that the PDCs were inertia-dominated.•PDCs were channelized into deep valleys changing to a forced convection-dominated dynamic.•Sustained convective-collapsing eruptive column occurred during most part of the eruption.•PDCs occurred since the beginning of the eruption and they were not related entirely to a caldera collapse phase. |
---|---|
ISSN: | 0895-9811 1873-0647 |
DOI: | 10.1016/j.jsames.2019.102482 |