Loading…
Truth table invariant cylindrical algebraic decomposition
When using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is likely not the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This observation motivates ou...
Saved in:
Published in: | Journal of symbolic computation 2016-09, Vol.76, p.1-35 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is likely not the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This observation motivates our article and definition of a Truth Table Invariant CAD (TTICAD).
In ISSAC 2013 the current authors presented an algorithm that can efficiently and directly construct a TTICAD for a list of formulae in which each has an equational constraint. This was achieved by generalising McCallum's theory of reduced projection operators. In this paper we present an extended version of our theory which can be applied to an arbitrary list of formulae, achieving savings if at least one has an equational constraint. We also explain how the theory of reduced projection operators can allow for further improvements to the lifting phase of CAD algorithms, even in the context of a single equational constraint.
The algorithm is implemented fully in Maple and we present both promising results from experimentation and a complexity analysis showing the benefits of our contributions. |
---|---|
ISSN: | 0747-7171 1095-855X |
DOI: | 10.1016/j.jsc.2015.11.002 |