Loading…
Polynomial solutions of algebraic difference equations and homogeneous symmetric polynomials
This article addresses the problem of computing an upper bound of the degree d of a polynomial solution P(x) of an algebraic difference equation of the form G(x)(P(x−τ1),…,P(x−τs))+G0(x)=0 when such P(x) with the coefficients in a field K of characteristic zero exists and where G is a non-linear s-v...
Saved in:
Published in: | Journal of symbolic computation 2021-03, Vol.103, p.22-45 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article addresses the problem of computing an upper bound of the degree d of a polynomial solution P(x) of an algebraic difference equation of the form G(x)(P(x−τ1),…,P(x−τs))+G0(x)=0 when such P(x) with the coefficients in a field K of characteristic zero exists and where G is a non-linear s-variable polynomial with coefficients in K[x] and G0 is a polynomial with coefficients in K.
It will be shown that if G is a quadratic polynomial with constant coefficients then one can construct a countable family of polynomials fl(u0) such that if there exists a (minimal) index l0 with fl0(u0) being a non-zero polynomial, then the degree d is one of its roots or d≤l0, or d |
---|---|
ISSN: | 0747-7171 1095-855X |
DOI: | 10.1016/j.jsc.2019.10.022 |