Loading…
Massively parallel computation of tropical varieties, their positive part, and tropical Grassmannians
We present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of symmetries using the workflow management system GPI-Space and the computer algebra system Singular. We determine the tropical Grassmannian TGr0(3,8). Our implementation works efficie...
Saved in:
Published in: | Journal of symbolic computation 2024-01, Vol.120, p.102224, Article 102224 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of symmetries using the workflow management system GPI-Space and the computer algebra system Singular. We determine the tropical Grassmannian TGr0(3,8). Our implementation works efficiently on up to 840 cores, computing the 14763 orbits of maximal cones under the canonical S8-action in about 20 minutes.
Relying on our result, we show that the Gröbner structure of TGr0(3,8) refines the 16-dimensional skeleton of the coarsest fan structure of the Dressian Dr(3,8), except for 23 orbits of special cones, for which we construct explicit obstructions to the realizability of their tropical linear spaces. Moreover, we propose algorithms for identifying maximal-dimensional cones which belong to positive tropicalizations of algebraic varieties. We compute the positive Grassmannian TGr+(3,8) and compare it to the cluster complex of the classical Grassmannian Gr(3,8). |
---|---|
ISSN: | 0747-7171 1095-855X |
DOI: | 10.1016/j.jsc.2023.102224 |