Loading…

Massively parallel computation of tropical varieties, their positive part, and tropical Grassmannians

We present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of symmetries using the workflow management system GPI-Space and the computer algebra system Singular. We determine the tropical Grassmannian TGr0(3,8). Our implementation works efficie...

Full description

Saved in:
Bibliographic Details
Published in:Journal of symbolic computation 2024-01, Vol.120, p.102224, Article 102224
Main Authors: Bendle, Dominik, Böhm, Janko, Ren, Yue, Schröter, Benjamin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of symmetries using the workflow management system GPI-Space and the computer algebra system Singular. We determine the tropical Grassmannian TGr0(3,8). Our implementation works efficiently on up to 840 cores, computing the 14763 orbits of maximal cones under the canonical S8-action in about 20 minutes. Relying on our result, we show that the Gröbner structure of TGr0(3,8) refines the 16-dimensional skeleton of the coarsest fan structure of the Dressian Dr(3,8), except for 23 orbits of special cones, for which we construct explicit obstructions to the realizability of their tropical linear spaces. Moreover, we propose algorithms for identifying maximal-dimensional cones which belong to positive tropicalizations of algebraic varieties. We compute the positive Grassmannian TGr+(3,8) and compare it to the cluster complex of the classical Grassmannian Gr(3,8).
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2023.102224