Loading…
Sufficient and admissible estimators in general multivariate linear model
The notion of linear sufficiency in general Gauss–Markov model is extended to a general multivariate linear model for any specific set of estimable functions. A general formula of the difference between the dispersion matrix of the BLUE in the original model and that in the transformed model is prov...
Saved in:
Published in: | Journal of statistical planning and inference 2005-12, Vol.135 (2), p.371-383 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The notion of linear sufficiency in general Gauss–Markov model is extended to a general multivariate linear model for any specific set of estimable functions. A general formula of the difference between the dispersion matrix of the BLUE in the original model and that in the transformed model is provided, which brings some further contributions to the theory of linear sufficiency. Moreover, a general formula of the change of BLUE due to transformation is obtained. The analysis here leads to some results, some of which are known in the literature. Besides linear sufficiency, the admissibility of a linear statistic is also extended to the multivariate case. |
---|---|
ISSN: | 0378-3758 1873-1171 |
DOI: | 10.1016/j.jspi.2004.05.005 |