Loading…

Synthesis and characterization of binary bismuth tungstate-graphitic carbon nitride (BWO/g-C3N4) heterojunction nanocomposites for efficient photodegradation of ibuprofen in aqueous media

Bismuth tungstate-graphitic carbon nitride (BWO/g-C3N4) heterojunction composites were synthesized by wet-impregnation of bulk g-C3N4 nanosheet with octahedron-shaped BWO, characterized and investigated for their photocatalytic capacity in the oxidative degradation of ibuprofen, under visible light...

Full description

Saved in:
Bibliographic Details
Published in:Journal of water process engineering 2023-08, Vol.54, p.104045, Article 104045
Main Authors: Oluwole, Adewumi Olufemi, Olatunji, Olatunde Stephen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bismuth tungstate-graphitic carbon nitride (BWO/g-C3N4) heterojunction composites were synthesized by wet-impregnation of bulk g-C3N4 nanosheet with octahedron-shaped BWO, characterized and investigated for their photocatalytic capacity in the oxidative degradation of ibuprofen, under visible light irradiation. The characterization of the synthesized composites was done using X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy equipped with EDS, photoluminescence spectroscopy, N2 adsorption-desorption analysis, and thermogravimetric analysis. The synthesized heterojunction composites of different masses of BWO/g-C3N4 showed superior photocatalytic performance for the degradation of ibuprofen, compared to pure BWO and g-C3N4 nanoparticles. The photodegradation efficiency of the 7 wt% BWO/g-C3N4 composite for the degradation of ibuprofen was 94.80 %, which is about 5 and 6 folds higher than those of pure BWO nanoparticles and g-C3N4 nanosheets, respectively. The enhancement in the photocatalytic performance of the BWO/g-C3N4 heterojunction composites may be due to the energy-lowering effect resulting from reduced bandgap of 2.43 eV, which is caused by the coupling of BWO and g-C3N4. The improved composite surface area of 46.15 m2/g facilitates effective charge separation of the photogenerated electron-hole pairs in the composites. Active species trapping experiments showed that the •OH and h+ reactive species were the main radicals involved in the catalytic degradation process ibuprofen. A 67.20 % degradation efficiency was achieved when the composite was tested for practical application in the degradation of ibuprofen in wastewater samples. •BWO/g-C3N4 composites were investigated for photocatalytic degradation of ibuprofen.•The composites were characterized for morphology & opto-spectroscopic properties.•The BWO/g-C3N4 showed good photocatalytic performance for ibuprofen degradation.•Degradation efficiency of 7 wt% BWO/g-C3N4 composite was 5 & 6 folds > BWO & g-C3N4.•Trapping experiment showed that •OH and h+ were the active reactive species.
ISSN:2214-7144
2214-7144
DOI:10.1016/j.jwpe.2023.104045