Loading…

3LPR: A three-stage label propagation and reassignment framework for class-imbalanced semi-supervised learning

Semi-supervised learning (SSL) has been studied widely in standard benchmark datasets; however, real-world data often exhibit class-imbalanced distributions, which pose significant challenges for deep semi-supervised models. To address this issue, we design a three-stage learning framework, 3LPR, by...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2022-10, Vol.253, p.109561, Article 109561
Main Authors: Kong, Xiangyuan, Wei, Xiang, Liu, Xiaoyu, Wang, Jingjie, Lu, Siyang, Xing, Weiwei, Lu, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semi-supervised learning (SSL) has been studied widely in standard benchmark datasets; however, real-world data often exhibit class-imbalanced distributions, which pose significant challenges for deep semi-supervised models. To address this issue, we design a three-stage learning framework, 3LPR, by combining unsupervised feature extraction, graph-based Label Propagation, and mixed data augmentation (MDA)-based label Reassignment. Specifically, we first explore the performance of supervised and unsupervised learning for feature extraction of class-imbalanced data and then establish our first stage of feature extraction through unsupervised learning. Then, we adopt graph network-based offline label propagation and sieving to effectively expand the labeled set to overcome the excessive label bias in the classifier during the training process. Finally, we propose a label reassignment (LRA) algorithm for class-imbalanced semi-supervised learning (CISSL) to train the expanded dataset, where the MDA strategy is adopted but with the label reassigned. The experimental results demonstrate that the proposed 3LPR framework for CISSL outperforms other state-of-the-art methods on various datasets.
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2022.109561