Loading…

On extremum properties of orthogonal quotients matrices

In this paper we explore the extremum properties of orthogonal quotients matrices. The orthogonal quotients equality that we prove expresses the Frobenius norm of a difference between two matrices as a difference between the norms of two matrices. This turns the Eckart–Young minimum norm problem int...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2010-02, Vol.432 (5), p.1234-1257
Main Author: Dax, Achiya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we explore the extremum properties of orthogonal quotients matrices. The orthogonal quotients equality that we prove expresses the Frobenius norm of a difference between two matrices as a difference between the norms of two matrices. This turns the Eckart–Young minimum norm problem into an equivalent maximum norm problem. The symmetric version of this equality involves traces of matrices, and adds new insight into Ky Fan’s extremum problems. A comparison of the two cases reveals a remarkable similarity between the Eckart–Young theorem and Ky Fan’s maximum principle. Returning to orthogonal quotients matrices we derive “rectangular” extensions of Ky Fan’s extremum principles, which consider maximizing (or minimizing) sums of powers of singular values.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2009.10.034