Loading…
Hankel determinants of sums of consecutive weighted Schröder numbers
We consider weighted large and small Schröder paths with up steps (1,1), down steps (1,-1) assigned the weight of 1 and with level steps (2,0) assigned the weight of t, where t is a real number. The weight of a path is the product of the weights of all its steps. Let rℓ(t) and sℓ(t) be the total wei...
Saved in:
Published in: | Linear algebra and its applications 2012-11, Vol.437 (9), p.2285-2299 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider weighted large and small Schröder paths with up steps (1,1), down steps (1,-1) assigned the weight of 1 and with level steps (2,0) assigned the weight of t, where t is a real number. The weight of a path is the product of the weights of all its steps. Let rℓ(t) and sℓ(t) be the total weight of all weighted large and small Schröder paths from (0,0) to (2ℓ,0), respectively. For constants α, β, we derive the generating functions and the explicit formulae for the determinants of the Hankel matrices (αri+j-2(t)+βri+j-1(t))i,j=1n, (αri+j-1(t)+βri+j(t))i,j=1n, (αsi+j-2(t)+βsi+j-1(t))i,j=1n and (αsi+j-1(t)+βsi+j(t))i,j=1n combinatorially via suitable lattice path models. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2012.05.024 |