Loading…
On the Choi–Lam analogue of Hilbert's 1888 theorem for symmetric forms
A famous theorem of Hilbert from 1888 states that for given n and d, every positive semidefinite (psd) real form of degree 2d in n variables is a sum of squares (sos) of real forms if and only if n=2 or d=1 or (n,2d)=(3,4). In 1976, Choi and Lam proved the analogue of Hilbert's Theorem for symm...
Saved in:
Published in: | Linear algebra and its applications 2016-05, Vol.496, p.114-120 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A famous theorem of Hilbert from 1888 states that for given n and d, every positive semidefinite (psd) real form of degree 2d in n variables is a sum of squares (sos) of real forms if and only if n=2 or d=1 or (n,2d)=(3,4). In 1976, Choi and Lam proved the analogue of Hilbert's Theorem for symmetric forms by assuming the existence of psd not sos symmetric n-ary quartics for n≥5. In this paper we complete their proof by constructing explicit psd not sos symmetric n-ary quartics for n≥5. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2016.01.024 |