Loading…
Free sets and free subsemimodules in a semimodule
In this paper, we investigate the free sets and the free subsemimodules in a semimodule over a commutative semiring S. First, we discuss some properties of the free sets and give a sufficient condition for a nonempty finite set to be free in a finitely generated free S-semimodule and obtain a relati...
Saved in:
Published in: | Linear algebra and its applications 2016-05, Vol.496, p.527-548 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate the free sets and the free subsemimodules in a semimodule over a commutative semiring S. First, we discuss some properties of the free sets and give a sufficient condition for a nonempty finite set to be free in a finitely generated free S-semimodule and obtain a relation between free set and linear independent set in an S-semimodule. Then we consider the free subsemimodules and prove that the rank of any free subsemimodule of a finitely generated S-semimodule M does not exceed that of M. Also, we give some equivalent descriptions for a commutative semiring S to have the property that all nonzero subsemimodules of any finitely generated free S-semimodule are free. Partial results obtained in the paper develop and generalize the corresponding results for modules over rings and linear spaces over fields. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2016.02.006 |