Loading…

Extrusive carbonatites: A brief review

49 known extrusive carbonatite occurrences are listed with brief details of their tectonic setting, structure, lithologies, associated silicate rocks, chemistry and presence or absence of included mantle materials. Half the occurrences appear to be related to tephra cones, tuff rings, diatremes and...

Full description

Saved in:
Bibliographic Details
Published in:Lithos 2005-11, Vol.85 (1), p.1-14
Main Authors: Woolley, A.R., Church, A.A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:49 known extrusive carbonatite occurrences are listed with brief details of their tectonic setting, structure, lithologies, associated silicate rocks, chemistry and presence or absence of included mantle materials. Half the occurrences appear to be related to tephra cones, tuff rings, diatremes and maars and the rest occur within strato-volcanoes. Pyroclastic carbonatitic rocks are present at all the localities, with carbonatite lava flows occurring at only 14 of them. The pyroclastic rocks, which include fallout tephra and deposits from pyroclastic surges and flows and products of phreatomagmatic eruptions, vary from rocks composed principally of carbonate to varieties with as little as 20% igneous carbonate. The most abundant silicate rocks associated with extrusive carbonatites are melilite-bearing rocks, nephelinite and/or ijolite, and phonolite and/or nepheline syenite; seven occurrences have no associated silicate rocks. 16 occurrences, most of them associated with small extrusive centres, contain mantle xenoliths or megacrysts, details of which are tabulated, with spinel lherzolite the most abundant rock type, but amphibole, phlogopite and garnet are also recorded. The lack of such materials in intrusive carbonatites may reflect their less energetic environment of emplacement. It is proposed that carbonatites are essentially of two types: (a) those rising energetically and rapidly from the mantle, which form small explosion craters, ash or tuff cones, or diatremes, have only low-volume associated silicate rocks, and entrain mantle debris, and (b) those which occur in strato-volcanoes, are associated with large volumes of silicate rocks and follow a more complex genesis, probably involving ponding and differentiation (separation from carbonate-bearing silicate magma) at higher levels in the mantle and/or crust. Most of the classic intrusive carbonatite complexes probably fall into the second category.
ISSN:0024-4937
1872-6143
DOI:10.1016/j.lithos.2005.03.018