Loading…

Siliciclastic influx and burial of the Cenozoic carbonate system in the Gulf of Papua

An extensive carbonate system in the Gulf of Papua (GoP), developed in the late Oligocene–middle Miocene, was buried by huge influx of siliciclastics originated from Papua New Guinea. Major episodes of siliciclastic influx in the carbonate system are related to tectonic activity in the fold and thru...

Full description

Saved in:
Bibliographic Details
Published in:Marine and petroleum geology 2010-02, Vol.27 (2), p.533-554
Main Authors: Tcherepanov, Evgueni N., Droxler, André W., Lapointe, Philippe, Mohn, Kenneth, Larsen, Odd A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An extensive carbonate system in the Gulf of Papua (GoP), developed in the late Oligocene–middle Miocene, was buried by huge influx of siliciclastics originated from Papua New Guinea. Major episodes of siliciclastic influx in the carbonate system are related to tectonic activity in the fold and thrust belt during the Oligocene Peninsular Orogeny, late Miocene Central Range Orogeny, and late Pliocene renewed uplift and exhumation of peninsular region. Siliciclastics did not influence the carbonate deposition during the late Oligocene–middle Miocene, since they were accumulated in the Aure Trough, proximal foreland basin protecting the carbonate system. The most significant burial of the carbonate system started during the late Miocene–early Pliocene in the result of the Central Range Orogeny. However, the largest influx was related to the renewed uplift of the Papuan Peninsula during the early late Pliocene. The shelf edge prograded ∼150 km and formed more than 80% of the modern shelf. This high siliciclastic influx was also enhanced by the “mid” Pliocene global warmth period and intensified East Asian monsoons at 3.6–2.9 Ma. Although many publications exist on carbonate–siliciclastic mixing in different depositional environments, this study helps understand the carbonate–siliciclastic interactions in space and time, especially at basinal scale, and during different intervals of the carbonate system burial by siliciclastic sediments.
ISSN:0264-8172
1873-4073
DOI:10.1016/j.marpetgeo.2009.09.002