Loading…
Counting and enumerating feasible rotating schedules by means of Gröbner bases
This paper deals with the problem of designing and analyzing rotating schedules with an algebraic computational approach. Specifically, we determine a set of Boolean polynomials whose zeros can be uniquely identified with the set of rotating schedules related to a given workload matrix subject to st...
Saved in:
Published in: | Mathematics and computers in simulation 2016-07, Vol.125, p.139-151 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the problem of designing and analyzing rotating schedules with an algebraic computational approach. Specifically, we determine a set of Boolean polynomials whose zeros can be uniquely identified with the set of rotating schedules related to a given workload matrix subject to standard constraints. These polynomials constitute zero-dimensional radical ideals, whose reduced Gröbner bases can be computed to count and even enumerate the set of rotating schedules that satisfy the desired set of constraints. Thereby, it enables to analyze the influence of each constraint in the same. |
---|---|
ISSN: | 0378-4754 1872-7166 |
DOI: | 10.1016/j.matcom.2014.12.002 |