Loading…
Three-dimensional compressible viscous micropolar fluid with cylindrical symmetry: Derivation of the model and a numerical solution
In this paper we consider the nonstationary 3D flow of a compressible viscous and heat-conducting micropolar fluid, which is in the thermodynamical sense perfect and polytropic. The fluid domain is the subset of R3 bounded with two coaxial cylinders that present solid thermoinsulated walls. We assum...
Saved in:
Published in: | Mathematics and computers in simulation 2017-10, Vol.140, p.107-124 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we consider the nonstationary 3D flow of a compressible viscous and heat-conducting micropolar fluid, which is in the thermodynamical sense perfect and polytropic. The fluid domain is the subset of R3 bounded with two coaxial cylinders that present solid thermoinsulated walls. We assume that the initial mass density, temperature, as well as the velocity and microrotation vectors are radially dependent only. The corresponding solution is also spatially radially dependent. We derive the mathematical model in the Lagrangian description and by using the Faedo–Galerkin method we introduce a system of approximate equations and construct its solutions. We also analyze two numerical examples. |
---|---|
ISSN: | 0378-4754 1872-7166 |
DOI: | 10.1016/j.matcom.2017.03.006 |