Loading…
Another approach to the fundamental theorem of Riemannian geometry in R 3 , by way of rotation fields
In 1992, C. Vallée showed that the metric tensor field C = ∇ Θ T ∇ Θ associated with a smooth enough immersion Θ : Ω → R 3 defined over an open set Ω ⊂ R 3 necessarily satisfies the compatibility relation CURL Λ + COF Λ = 0 in Ω , where the matrix field Λ is defined in terms of the field U = C 1 /...
Saved in:
Published in: | Journal de mathématiques pures et appliquées 2007-03, Vol.87 (3), p.237-252 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In 1992, C. Vallée showed that the metric tensor field
C
=
∇
Θ
T
∇
Θ
associated with a smooth enough immersion
Θ
:
Ω
→
R
3
defined over an open set
Ω
⊂
R
3
necessarily satisfies the compatibility relation
CURL
Λ
+
COF
Λ
=
0
in
Ω
,
where the matrix field
Λ is defined in terms of the field
U
=
C
1
/
2
by
Λ
=
1
det
U
{
U
(
CURL
U
)
T
U
−
1
2
(
tr
[
U
(
CURL
U
)
T
]
)
U
}
.
The main objective of this paper is to establish the following converse: If a smooth enough field
C of symmetric and positive-definite matrices of order three satisfies the above compatibility relation over a simply-connected open set
Ω
⊂
R
3
, then there exists, typically in spaces such as
W
loc
2
,
∞
(
Ω
;
R
3
)
or
C
2
(
Ω
;
R
3
)
, an immersion
Θ
:
Ω
→
R
3
such that
C
=
∇
Θ
T
∇
Θ
in
Ω.
This global existence theorem thus provides an alternative to the fundamental theorem of Riemannian geometry for an open set in
R
3
, where the compatibility relation classically expresses that the Riemann curvature tensor associated with the field
C vanishes in
Ω.
The proof consists in first determining an orthogonal matrix field
R defined over
Ω, then in determining an immersion
Θ such that
∇
Θ
=
R
C
1
/
2
in
Ω, by successively solving two Pfaff systems. In addition to its novelty, this approach thus also possesses a more “geometrical” flavor than the classical one, as it directly seeks the polar factorization
∇
Θ
=
RU
of the immersion gradient in terms of a rotation
R and a pure stretch
U
=
C
1
/
2
.
This approach also constitutes a first step towards the analysis of models in nonlinear three-dimensional elasticity where the rotation field is considered as one of the primary unknowns.
En 1992, C. Vallée a montré que le champ
C
=
∇
Θ
T
∇
Θ
de tenseurs métriques associé à une immersion suffisamment régulière
Θ
:
Ω
→
R
3
définie sur un ouvert
Ω
⊂
R
3
vérifie nécessairement la relation de compatibilité
CURL
Λ
+
COF
Λ
=
0
in
Ω
,
où le champ
Λ de matrices est défini en fonction du champ
U
=
C
1
/
2
par
Λ
=
1
det
U
{
U
(
CURL
U
)
T
U
−
1
2
(
tr
[
U
(
CURL
U
)
T
]
)
U
}
.
L'objet principal de cet article est d'établir la réciproque suivante : Si un champ suffisamment régulier
C de matrices symétriques définies positives d'ordre trois satisfait la relation de compatibilité ci-dessus dans un ouvert
Ω
⊂
R
3
simplement connexe, alors il existe, typiquement dans des espaces tels que
W
loc
2
,
∞
(
Ω
;
R
3
)
ou
C
2
(
Ω
;
R
3
)
, une immersion
Θ
:
Ω
→
R
3
telle que
C
=
∇
Θ
T
∇
Θ
in
Ω.
Ce théorème d'existence global f |
---|---|
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2006.10.009 |