Loading…

Nonnegative solutions of semilinear elliptic equations in half-spaces

We consider the semilinear elliptic problem(0.1){−Δu=f(u)in R+Nu=0on ∂R+N where the nonlinearity f is assumed to be C1 and globally Lipschitz with f(0)0} stands for the half-space. Denoting by u0 the unique solution of the one-dimensional problem −u″=f(u) with u(0)=u′(0)=0, we show that nonnegative...

Full description

Saved in:
Bibliographic Details
Published in:Journal de mathématiques pures et appliquées 2016-11, Vol.106 (5), p.866-876
Main Authors: Cortázar, Carmen, Elgueta, Manuel, García-Melián, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the semilinear elliptic problem(0.1){−Δu=f(u)in R+Nu=0on ∂R+N where the nonlinearity f is assumed to be C1 and globally Lipschitz with f(0)0} stands for the half-space. Denoting by u0 the unique solution of the one-dimensional problem −u″=f(u) with u(0)=u′(0)=0, we show that nonnegative solutions u of (0.1) which verify u(x)≥u0(xN) in R+N either are positive and monotone in the xN direction or coincide with u0. As a particular instance, when f(t)=t−1, we prove that the unique nonnegative (not necessarily bounded) solution of (0.1) is u(x)=1−cos⁡xN. This solves in a strengthened form a conjecture posed by Berestycki, Caffarelli and Nirenberg in 1997. On considère le problème elliptique semilinéaire(0.1){−Δu=f(u)dansR+Nu=0sur∂R+N où la non-linéarité f est supposée être C1 et globalement lipschitzienne avec f(0)0} est le demi-espace. On note u0 l'unique solution du problème unidimensionel −u″=f(u) avec u(0)=u′(0)=0, on montre que les solutions nonnégatives u du problème (0.1) qui vérifient u(x)≥u0(xN) dans R+N sont ou positives et monotones dans la direction xN ou coincident avec u0. Comme cas particulier pour f(t)=t−1, on démontre que l'unique solution de (0.1) nonnégative (non nécessairement bornée) est u(x)=1−cos⁡xN. Ce qui résout sous une forme plus forte une conjecture émise par Berestycki, Caffarelli et Nirenberg en 1997.
ISSN:0021-7824
DOI:10.1016/j.matpur.2016.03.014