Loading…
Regularity of intrinsically convex W2,2 surfaces and a derivation of a homogenized bending theory of convex shells
We prove interior regularity for W2,2 isometric immersions of surfaces endowed with a smooth Riemannian metric of positive Gauss curvature. We then derive the Γ-limit of three dimensional nonlinear shells with inhomogeneous energy density, in the bending energy regime. This derivation is incomplete...
Saved in:
Published in: | Journal de mathématiques pures et appliquées 2018-07, Vol.115, p.1-23 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove interior regularity for W2,2 isometric immersions of surfaces endowed with a smooth Riemannian metric of positive Gauss curvature.
We then derive the Γ-limit of three dimensional nonlinear shells with inhomogeneous energy density, in the bending energy regime. This derivation is incomplete in that it requires an additional technical hypothesis.
Nous prouvons un résultat de régularité intérieure pour des immersions isometriques W2,2 de surfaces munies d'une metrique riemannienne reguliere de courbure de Gauss positive. Nous derivons la Γ-limite de coques en flexion non linéaires et non homogènes. Ce résultat est incomplet puisqu'il nécessite une hypothèse (technique) additionnelle. |
---|---|
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2018.04.008 |