Loading…
Spectra of Bernoulli convolutions and random convolutions
In this work we study the harmonic analysis of infinite convolutions generated by compatible pairs. We first give some sufficient conditions so that a random infinite convolution μ becomes a spectral measure, i.e., there exists a countable set Λ⊆Rn such that E(Λ)={e2πi〈λ,x〉:λ∈Λ} forms an orthonormal...
Saved in:
Published in: | Journal de mathématiques pures et appliquées 2018-08, Vol.116, p.105-131 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we study the harmonic analysis of infinite convolutions generated by compatible pairs. We first give some sufficient conditions so that a random infinite convolution μ becomes a spectral measure, i.e., there exists a countable set Λ⊆Rn such that E(Λ)={e2πi〈λ,x〉:λ∈Λ} forms an orthonormal basis for L2(μ). As applications, we settle down the spectral eigenvalue problem for spectral Bernoulli convolutions.
Dans ce travail nous étudions l'analyse harmonique de convolutions infinies engendrées par des paires compatibles. Nous donnons d'abord des conditions suffisantes telles qu'une convolution infinie aléatoire μ devient une mesure spectrale, i.e., il existe un ensemble dénombrable Λ⊆Rn tel que E(Λ)={e2πi〈λ,x〉:λ∈Λ} offre une base orthonormée pour L2(μ). Comme application, nous tranchons le problème de valeurs propres spectrales pour les convolutions spectrales de Bernoulli. |
---|---|
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2018.06.002 |