Loading…

Minimizing movements for mean curvature flow of droplets with prescribed contact angle

We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed as a limit of an approximation algorithm of Almgren–Taylor–Wang and Luckhaus–Sturzenhecker, we show the existence...

Full description

Saved in:
Bibliographic Details
Published in:Journal de mathématiques pures et appliquées 2018-09, Vol.117, p.1-58
Main Authors: Bellettini, G., Kholmatov, Sh.Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed as a limit of an approximation algorithm of Almgren–Taylor–Wang and Luckhaus–Sturzenhecker, we show the existence of a weak evolution, and its compatibility with a distributional solution. We also prove various comparison results. Nous étudions le mouvement par courbure moyenne d'une goutte qui glisse par courbure moyenne sur un hyperplan horizontal avec un angle de contact prescrit éventuellement non constant. En utilisant les solutions construites comme limites d'un algorithme d'approximation dû à Almgren, Taylor et Wang et Luckhaus et Sturzenhecker, nous montrons l'existence d'une évolution faible, et sa compatibilité avec une solution au sens des distributions. Nous démontrons également plusieurs résultats de comparaison.
ISSN:0021-7824
DOI:10.1016/j.matpur.2018.06.003