Loading…
Classification of right-angled Coxeter groups with a strongly solid von Neumann algebra
Let W be a finitely generated right-angled Coxeter group with group von Neumann algebra L(W). We prove the following dichotomy: either L(W) is strongly solid or W contains Z×F2 as a subgroup. This proves in particular strong solidity of L(W) for all non-hyperbolic Coxeter groups that do not contain...
Saved in:
Published in: | Journal de mathématiques pures et appliquées 2024-09, Vol.189, p.103591, Article 103591 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let W be a finitely generated right-angled Coxeter group with group von Neumann algebra L(W). We prove the following dichotomy: either L(W) is strongly solid or W contains Z×F2 as a subgroup. This proves in particular strong solidity of L(W) for all non-hyperbolic Coxeter groups that do not contain Z×F2.
Étant donné un groupe de Coxeter à angles droits W et L(W) l'algèbre de von Neumann associée, nous montrons l'alternative suivante : L(W) est fortement solide ou alors Z×F2 est un sous-groupe de W. En particulier, cela implique que les groupes de Coxeter non-hyperboliques qui ne contiennent pas Z×F2 ont une algèbre de von Neumann fortement solide. |
---|---|
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2024.06.006 |