Loading…
Optimal regularity for the 2D Euler equations in the Yudovich class
We analyze the optimal regularity that is exactly propagated by a transport equation driven by a velocity field with a BMO gradient. As an application, we study the 2D Euler equations in case the initial vorticity is bounded. The sharpness of our result for the Euler equations follows from a variati...
Saved in:
Published in: | Journal de mathématiques pures et appliquées 2024-11, Vol.191, p.103631, Article 103631 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analyze the optimal regularity that is exactly propagated by a transport equation driven by a velocity field with a BMO gradient. As an application, we study the 2D Euler equations in case the initial vorticity is bounded. The sharpness of our result for the Euler equations follows from a variation of Bahouri and Chemin's vortex patch example.
Nous analysons la régularité optimale propagée par une équation de transport avec un champ de vitesse ayant un gradient BMO. Nous appliquons notre résultat aux équations d'Euler en dimension 2 dans le cas où la vorticité initiale est bornée. L'optimalité de nos résultats découle d'une variante de l'exemple de la poche de tourbillon de Bahouri et Chemin. |
---|---|
ISSN: | 0021-7824 |
DOI: | 10.1016/j.matpur.2024.103631 |