Loading…
Parallel implementation of quorum planted (ℓ, d) motif search on multi-core/many-core platforms
Multi-core and many-core architectures are widely adopted by researchers in applied sciences and engineering, owing to their reasonable cost, and ease of access. Moreover, their painless hardware set-up process and rather simple programming paradigm attract more researchers to acquire them and imple...
Saved in:
Published in: | Microprocessors and microsystems 2016-10, Vol.46, p.255-263 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-core and many-core architectures are widely adopted by researchers in applied sciences and engineering, owing to their reasonable cost, and ease of access. Moreover, their painless hardware set-up process and rather simple programming paradigm attract more researchers to acquire them and implement their time-expensive computations on these platforms. Planted Motif Search problem is one of the most challenging problems in bioinformatics whose goal is to enumerate all strings of length ℓ that are commonly planted in a given set of DNA sequences. In this paper, we propose an efficient method of thread parallelization to accelerate the latest Quorum Planted Motif Search algorithm (qPMS9) on multi-core and many-core systems. Our contribution towards dynamic scheduling of threads and parallelization of loops in the proposed method outperforms previous sequential and parallel algorithms. |
---|---|
ISSN: | 0141-9331 1872-9436 |
DOI: | 10.1016/j.micpro.2016.06.008 |