Loading…

1H, 13C and 15N NMR spectral and theoretical studies of some methyl and alkylamino derivatives of 4-halopyridine N-oxides

Nine new and three earlier known 4-halogen (Cl and Br) substituted pyridine N-oxides have been prepared and their 1H, 13C and 15N NMR chemical shifts assigned based on PFG 1H, X (X= 13C and 15N) HMQC and HMBC experiments as well as the comparison with our earlier results for substituted pyridine N-o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular structure 2006-02, Vol.783 (1), p.73-78
Main Authors: Laihia, K., Puszko, A., Linnanto, J., Kolehmainen, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nine new and three earlier known 4-halogen (Cl and Br) substituted pyridine N-oxides have been prepared and their 1H, 13C and 15N NMR chemical shifts assigned based on PFG 1H, X (X= 13C and 15N) HMQC and HMBC experiments as well as the comparison with our earlier results for substituted pyridine N-oxide derivatives. The 15N resonances of the pyridine nitrogen are 27–40 ppm more shielded in 4-halo-2-alkylamino-6-methyl-5-nitropyridine N-oxide than in parent 4-halopyridine N-oxide. According to quantum chemical ab initio HF/6-311G** calculations the amino tautomer of 4-chloro-2-methylamino-6-methyl-5-nitropyridine N-oxide is more stable than its imino form. Using B3LYP/6-311G** optimized structures both 13C and 15N shifts were calculated by density functional B3LYP/6-311G** CSGT methods for the amino and imino tautomers as well as for the dimeric structure for 4-chloro-2-methylamino-6-methyl-5-nitropyridine N-oxide. The 15N NMR and DFT calculations suggest the prevailing of the dimeric amino form for one congener, which is further supported by ESI-TOF MS data.
ISSN:0022-2860
1872-8014
DOI:10.1016/j.molstruc.2005.01.065