Loading…

Hot shortness behavior of a copper-alloyed high strength interstitial free steel

Hot shortness studies have been carried out on a copper-alloyed high strength interstitial free steel concentrating on the factors such as strain rate, temperature of deformation and, time and temperature of high temperature exposure. Thermomechanical schedules have been simulated for industrial con...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2013-12, Vol.588, p.288-298
Main Authors: Rana, R., Bleck, W., Singh, S.B., Mohanty, O.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hot shortness studies have been carried out on a copper-alloyed high strength interstitial free steel concentrating on the factors such as strain rate, temperature of deformation and, time and temperature of high temperature exposure. Thermomechanical schedules have been simulated for industrial conventional and direct hot rolling deformation processes. In comparison with traditional interstitial free steel, the mechanical properties of copper-alloyed high strength interstitial free steel at high temperature deteriorate significantly due to hot shortness. The best mechanical properties were obtained when the steel was reheated in Ar atmosphere to avoid oxidation and concomitant hot shortness. Enhanced oxidation of the material before hot deformation resulting from high temperature exposure in air for longer durations increases the susceptibility of the material to hot shortness. It has been shown that 1373K is the most detrimental temperature with regard to the susceptibility of the material to hot shortness irrespective of the deformation schedule. Temperatures higher and lower than 1373K reduce the susceptibility.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2013.09.041